ArcGIS REST Services Directory Login | Get Token
JSON | SOAP | WCS

US_Sea_Level_Rise_Intermediate_Baseline_2020 (ImageServer)

View In:   ArcGIS JavaScript   ArcGIS Online Map Viewer   ArcGIS Earth   ArcMap

View Footprint In:   ArcGIS Online Map Viewer

Service Description: U.S. Sea Level Rise Inundation: Scenario Intermediate Baseline - Year 2020 The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results. This was done for each of the emissions scenarios (Lower Emissions = 2022 Intermediate SLR Scenario Higher Emissions = 2022 Intermediate High SLR Scenario) at each of the mapped time intervals (Early Century - Year 2030, Middle Century - Year 2050, and Late Century - Year 2090). The resulting maps are displayed in the CMRA Assessment Tool. County, tract, and tribal geographies summaries of percentage SLR inundation were also calculated using Zonal Statistics tools. The Sea Level Rise Scenario year 2020 is considered “baseline” and the impacts are calculated by subtracting the baseline value from each of the near-term, mid-term and long-term timeframes. General Disclaimer The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes. SLR visualizations and statistics are not available in CMRA for Hawaii, Alaska, or U.S. territories at this time. Levees Disclaimer Enclosed levee areas are displayed as gray areas on the maps. Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database. Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences. Citations 2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

Name: US_Sea_Level_Rise_Intermediate_Baseline_2020

Description: U.S. Sea Level Rise Inundation: Scenario Intermediate Baseline - Year 2020 The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results. This was done for each of the emissions scenarios (Lower Emissions = 2022 Intermediate SLR Scenario Higher Emissions = 2022 Intermediate High SLR Scenario) at each of the mapped time intervals (Early Century - Year 2030, Middle Century - Year 2050, and Late Century - Year 2090). The resulting maps are displayed in the CMRA Assessment Tool. County, tract, and tribal geographies summaries of percentage SLR inundation were also calculated using Zonal Statistics tools. The Sea Level Rise Scenario year 2020 is considered “baseline” and the impacts are calculated by subtracting the baseline value from each of the near-term, mid-term and long-term timeframes. General Disclaimer The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes. SLR visualizations and statistics are not available in CMRA for Hawaii, Alaska, or U.S. territories at this time. Levees Disclaimer Enclosed levee areas are displayed as gray areas on the maps. Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database. Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences. Citations 2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

Single Fused Map Cache: false

Extent: Initial Extent: Full Extent: Pixel Size X: 2.6949458507765432E-5

Pixel Size Y: 2.6949458501348134E-5

Band Count: 1

Pixel Type: U8

RasterFunction Infos: {"rasterFunctionInfos": [{ "name": "None", "description": "", "help": "" }]}

Mensuration Capabilities: Basic

Has Histograms: true

Has Colormap: false

Has Multi Dimensions : false

Rendering Rule:

Min Scale: 0

Max Scale: 0

Copyright Text: NOAA, NASA, USGS

Service Data Type: esriImageServiceDataTypeGeneric

Min Values: 1

Max Values: 1

Mean Values: 1

Standard Deviation Values: 0

Object ID Field:

Fields: None

Default Mosaic Method: Center

Allowed Mosaic Methods:

SortField:

SortValue: null

Mosaic Operator: First

Default Compression Quality: 75

Default Resampling Method: Bilinear

Max Record Count: null

Max Image Height: 4100

Max Image Width: 15000

Max Download Image Count: null

Max Mosaic Image Count: null

Allow Raster Function: true

Allow Copy: null

Allow Analysis: null

Allow Compute TiePoints: false

Supports Statistics: false

Supports Advanced Queries: false

Use StandardizedQueries: true

Raster Type Infos: Has Raster Attribute Table: true

Edit Fields Info: null

Ownership Based AccessControl For Rasters: null

Child Resources:   Info   Raster Attribute Table   Histograms   Key Properties   Legend   Raster Function Infos

Supported Operations:   Export Image   Identify   Measure   Compute Histograms   Compute Statistics Histograms   Get Samples   Compute Class Statistics   Query Boundary   Compute Pixel Location   Compute Angles   Validate   Project